# IC DATA SHEET

# LDO REGULATOR WITH ON/OFF SWITCH TK717xxS



# TK717xxS

### Features

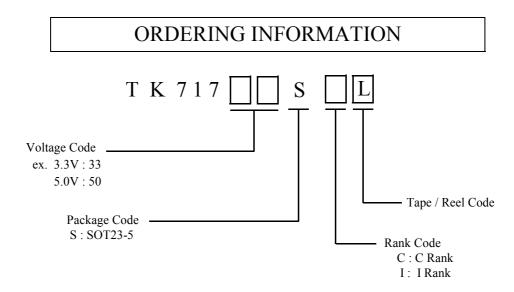
- Built-in shunt circuit of output to GND. Charged energy of output capacitor is discharged quickly.
- Built-in PNP power transistor. Very small Dropout Voltage (Vdrop=163mV at Iout=200m A)
- · Very good stability (CL=0.22 $\mu$ F is stable for any type capacitor with 2.0V $\leq$ Vout )
- $\cdot$  High accuracy out put voltage (  $\pm 50$  mV or  $\pm 1.5\%$  )
- · Good ripple rejection ratio (80dB at 1kHz lout=10mA)
- Wide operating voltage range ( 1.8V~14V )
- Built-in short circuit protection
- Built-in over temperature protection
- Suitable for low noise applications
- · Available with On/Off control (High/On). Off time input current becomes pA level
- · Very small package

#### Description

The TK717xx is an integrated circuit with a silicon monolithic bipolar structure. The regulator is of the low saturation voltage output type with very little quiescent current ( $72\mu A$ ).

The PNP power transistor is built-in. The I/O voltage difference is 163 mV (typical) when a current of 200mA is supplied to the system. Because of the low voltage drop, the voltage source can be effectively used; this makes it very suitable for battery powered equipment.

The on/off function is built into the IC. The current during standby mode becomes very small (pA level).


In addition, the output short-circuit function works at off times. It is a unique characteristic by which the residual charge of the output side capacitor is rapidly discharged.

The output voltage is available from 1.5 to 10.0V in 0.1V steps. The output voltage is trimmed with high accuracy. This allows the optimum voltage to be selected for the equipment.

The over current sensor circuit and the reverse-bias protection circuit are built-in.

It is a very rugged design because the ESD protection is high. Therefore, the TK717xx can be used with confidence. When mounted on the PCB, the power dissipation rating becomes about 500mW, even though the package is very small.

The TK717xx features very high stability in both DC and AC. The capacitor on the output side provides stable operation with  $0.22\mu$ F with  $2.0V \le$ Vout. A capacitor of any type can be used; however, the larger this capacitor is, the better the overall characteristics are.



| V OUT | V CODE |
|-------|--------|-------|--------|-------|--------|-------|--------|
| 1.5 v | 15     | 2.5 v | 25     | 3.5 v | 35     | 4.5 v | 45     |
| 1.6   | 16     | 2.6   | 26     | 3.6   | 36     | 4.6   | 46     |
| 1.7   | 17     | 2.7   | 27     | 3.7   | 37     | 4.7   | 47     |
| 1.8   | 18     | 2.8   | 28     | 3.8   | 38     | 4.8   | 48     |
| 1.9   | 19     | 2.9   | 29     | 3.9   | 39     | 4.9   | 49     |
| 2.0   | 20     | 3.0   | 30     | 4.0   | 40     | 5.0   | 50     |
| 2.1   | 21     | 3.1   | 31     | 4.1   | 41     |       |        |
| 2.2   | 22     | 3.2   | 32     | 4.2   | 42     |       |        |
| 2.3   | 23     | 3.3   | 33     | 4.3   | 43     |       |        |
| 2.4   | 24     | 3.4   | 34     | 4.4   | 44     |       |        |

Absolute maximum ratings

C rank device

| insolute mainmain racings   |                |                 |      |                                |
|-----------------------------|----------------|-----------------|------|--------------------------------|
| Parameters                  | Symbol         | Limiting Values | Unit | Condition                      |
| Supply voltage              | VccMax         | -0.4 ~ 16       | V    |                                |
| Reverse bias                | VrMax          | -0.4 ~ 6        | V    | : Vout $\leq 2.0$ V            |
|                             | VIIVIAX        | -0.4 ~ 12       | V    | $: 2.1V \le Vout$              |
| Np pin voltage              | VnpMax         | $-0.4 \sim 5$   | V    |                                |
| Control pin voltage         | VcontMax       | -0.4 ~ 16       | V    |                                |
| Storage temperature Range   | Tstg           | -55 ~ 150       | °C   |                                |
| Power dissipation           | P <sub>D</sub> | 500             | mW   | Internally limited<br>Tj=150°C |
| Operating voltage range     | Von            | 2.1 ~ 14        | V    | : Top=-40 ~ 85 °C              |
|                             | Vop            | 1.8 ~ 14.5      | V    | : Top=-30 ~ 80 °C              |
| Operating temperature range | Тор            | -40 ~ 85        | °C   |                                |
| Short circuit current       | Ishort         | 410             | mA   |                                |

#### Electronic characteristics

|                        |                 |           |            |        | v in=      | =Vout <sub>Typ</sub> +1V Vcont= $1.8V(Ta=25^{\circ}C)$            |  |  |
|------------------------|-----------------|-----------|------------|--------|------------|-------------------------------------------------------------------|--|--|
| Parameters             | Symbol          | Min       | Т ур       | Max    | Unit       | Condition                                                         |  |  |
| Output voltage         | Vout            |           | See ta     | ible 1 |            | Iout=5mA                                                          |  |  |
| Line regulation        | LinReg          |           | 0          | 5      | mV         | Vin=Vout <sub>Typ</sub> +1V Vout <sub>Typ</sub> +6V $\Delta V=5V$ |  |  |
| Load regulation        | LoaReg          |           | (8)        | (23)   | mV         | 5mA <iout<100ma note1<="" td=""></iout<100ma>                     |  |  |
|                        |                 |           | (21)       | (58)   | mV         | 5mA <iout<200ma note1<="" td=""></iout<200ma>                     |  |  |
| Dropout voltage        | Vdrop           |           | 65         | 130    | mV         | Iout=50mA                                                         |  |  |
|                        |                 |           | 103        | 200    | mV         | Iout=100mA                                                        |  |  |
|                        |                 |           | 163        | 300    | mV         | Iout=200mA (2.4V≤Vout)                                            |  |  |
|                        |                 |           | 163        | 300    | mV         | Iout=180mA (2.1V≤Vout<2.4V)                                       |  |  |
|                        | 1.5V≤Vout≤2     | 2.0V :    | No regula  | tion   | Becaus     | se of VopMin=1.8V                                                 |  |  |
| Maximum output current | IoutMax         | 280       | 370        |        | mA         | When (Vout <sub>Typ</sub> . $\times$ 0.9)                         |  |  |
|                        |                 |           | 250        |        |            | <b>1.8V≤Vin≤2.1V</b> Reference Value                              |  |  |
| Quiescent current      | Iq              |           | 72         | 110    | μA         | Iout=0mA Excluding Icont                                          |  |  |
| Ground pin current     | Ignd            |           | 0.8        | 1.5    | mA         | Iout=50mA                                                         |  |  |
| Standby current        | Istandby        |           | 0.0        | 0.1    | μA         | Vcc=8V, Vcont≤0.15V Off state                                     |  |  |
| Discharge current      | Idis            | 19        | 29         |        | mA         | Vrev=2V off state (71720)                                         |  |  |
|                        |                 | 25        | 38         |        | mA         | Vrev=3V off state (71730)                                         |  |  |
|                        |                 | 27        | 41         |        | mA         | Vrev=4V off state (71740)                                         |  |  |
|                        |                 | 29        | 44         |        | mA         | Vrev=5V off state (71750)                                         |  |  |
| Con                    | trol terminal S | Specifica | tion (Pull | down r | resistor = | None (Note 2)                                                     |  |  |
| Control current        | Icont           |           | 0.86       | 2.5    | μΑ         | Vcont=1.8V on state                                               |  |  |
| Control voltage        | Vcont           | 1.8       |            |        | V          | on state, Top=-40 ~ 85°C                                          |  |  |
|                        |                 |           |            | 0.35   | V          | off state, Top=-40 ~ 85°C                                         |  |  |
|                        |                 | 1.6       |            |        | V          | on state, Top=-30 ~ 80°C                                          |  |  |
|                        |                 |           |            | 0.6    | V          | off state, Top=-30 ~ 80°C                                         |  |  |
| Np terminal Voltage    | VNp             |           | 1.26       |        | V          |                                                                   |  |  |
| Vo                     | Vo/Ta           |           | 5 ppm/°C   |        | eference   |                                                                   |  |  |
| Out put noise          | Vno             | 0.14~0    | ).25 μV/   | Hz at  | 1kHz       | Reference Value                                                   |  |  |

Vin=Vout<sub>Typ</sub>+1V Vcont= $1.8V(Ta=25^{\circ}C)$ 

Note 1: This value depends on the output voltage (this is a value for a Vout=3V device.) This value improves in a low voltage device.

Note 2: The input current decreases to the pA level by connecting the control terminal to GND. ( Off state )

General Note: Limits are guaranteed by production testing or correction techniques using Statistical Quality Co ntrol (SQC) methods. Unless otherwise noted. Vtest=Vout<sub>Typ</sub>+1v; Iout=1mA (Tj=25°C) The ope ration of -40 ~-85°C is guaranteed in the design by a usual inspection.

General Note: Exceeding the "Absolute Maximum Rating " may damage the device

General Note: Connecting a capacitor to the noise bypass pin can decrease the output noise voltage

General Note: Output noise is 0.14~0.25  $\mu V/$   $\,$  Hz at 1kHz : 25~65  $\mu V rms$  at BW400-80kHz

General Note: The ripple rejection is 84dB at 400Hz and 80dB at 1kHz.

[CL=1.0µF,Cnp=0.01µF,Vnois=200mV<sub>RMS</sub>,Vin=Vout<sub>Typ</sub>+1.5V,Iout=10mA]

### Table 1

### C Rank Output Voltage

Ta=25°C Iout=5mA

| Output  | Voltage | Vout   | Vout   | Test    | Output  | Voltage | Vout   | Vout   | Test    |
|---------|---------|--------|--------|---------|---------|---------|--------|--------|---------|
| Voltage | Code    | Min    | Max    | Voltage | Voltage | Code    | Min    | Max    | Voltage |
| 1.5v    | 15      | 1.450v | 1.550v | 2.5v    | 3.4 v   | 34      | 3.349v | 3.451v | 4.4v    |
| 1.6     | 16      | 1.550  | 1.650  | 2.6     | 3.5     | 35      | 3.447  | 3.553  | 4.5     |
| 1.7     | 17      | 1.650  | 1.750  | 2.7     | 3.6     | 36      | 3.546  | 3.654  | 4.6     |
| 1.8     | 18      | 1.750  | 1.850  | 2.8     | 3.7     | 37      | 3.644  | 3.756  | 4.7     |
| 1.9     | 19      | 1.850  | 1.950  | 2.9     | 3.8     | 38      | 3.743  | 3.857  | 4.8     |
| 2.0     | 20      | 1.950  | 2.050  | 3.0     | 3.9     | 39      | 3.841  | 3.959  | 4.9     |
| 2.1     | 21      | 2.050  | 2.150  | 3.1     | 4.0     | 40      | 3.940  | 4.060  | 5.0     |
| 2.2     | 22      | 2.150  | 2.250  | 3.2     | 4.1     | 41      | 4.038  | 4.162  | 5.1     |
| 2.3     | 23      | 2.250  | 2.350  | 3.3     | 4.2     | 42      | 4.137  | 4.263  | 5.2     |
| 2.4     | 24      | 2.350  | 2.450  | 3.4     | 4.3     | 43      | 4.235  | 4.365  | 5.3     |
| 2.5     | 25      | 2.450  | 2.550  | 3.5     | 4.4     | 44      | 4.334  | 4.466  | 5.4     |
| 2.6     | 26      | 2.550  | 2.650  | 3.6     | 4.5     | 45      | 4.432  | 4.568  | 5.5     |
| 2.7     | 27      | 2.650  | 2.750  | 3.7     | 4.6     | 46      | 4.531  | 4.669  | 5.6     |
| 2.8     | 28      | 2.750  | 2.850  | 3.8     | 4.7     | 47      | 4.629  | 4.771  | 5.7     |
| 2.9     | 29      | 2.850  | 2.950  | 3.9     | 4.8     | 48      | 4.728  | 4.872  | 5.8     |
| 3.0     | 30      | 2.950  | 3.050  | 4.0     | 4.9     | 49      | 4.826  | 4.974  | 5.9     |
| 3.1     | 31      | 3.050  | 3.150  | 4.1     | 5.0     | 50      | 4.925  | 5.075  | 6.0     |
| 3.2     | 32      | 3.150  | 3.250  | 4.2     |         |         |        |        |         |
| 3.3     | 33      | 3.250  | 3.350  | 4.3     |         |         |        |        |         |

The output voltage table indicates the standard value when manufactured.

## **RL**TOKO

I Rank

#### Absolute Maximum Ratings are same as C Rank Operating Temperature Range Top=-40~85°C Operating Voltage Range Vop = 2.1V~14V

Other items are same as C rank.

**Boldface type** applies over the full operating temperature range. (-40°C ~85°C)

|                                        |                |                                    |           |                   |           | Vin=Vout <sub>Typ</sub> +1V Vcont=1.8V        |
|----------------------------------------|----------------|------------------------------------|-----------|-------------------|-----------|-----------------------------------------------|
| Parameters                             | Symbol         | Min                                | Т уар     | Max               | Unit      | Condition                                     |
| Output voltage                         | Vout           |                                    | See ta    | ble 2             |           |                                               |
| Line regulation                        | LinReg         |                                    | 0         | 5<br>8            | mV        | $\Delta V=5V$                                 |
| Load regulation                        | LoaReg         |                                    | (8)       | (23)<br><b>31</b> | mV        | 5mA <iout<100ma note1<="" td=""></iout<100ma> |
|                                        |                |                                    | (21)      | (58)<br>72        | mV        | 5mA <iout<200ma note1<="" td=""></iout<200ma> |
| Dropout voltage                        | Vdrop          |                                    | 65        | 130<br><b>180</b> | mV        | Iout=50mA                                     |
|                                        |                |                                    | 103       | 200<br>270        | mV        | Iout=100mA                                    |
|                                        |                |                                    | 163       | 300<br><b>350</b> | mV        | Iout=200mA( <b>2.4V</b> ≤ <b>Vout</b> )       |
|                                        |                |                                    | 163       | 300<br><b>350</b> | mV        | Iout=180mA (2.2V≤Vout<2.4V)                   |
|                                        | 1.5V≤Vou       | 1.5V Vout 2.1V :No regulation Beca |           |                   |           | cause of VopMin=2.1V                          |
| Maximum output current                 | IoutMax        | 280<br>250                         | 370       |                   | mA        | When (Vout <sub>Typ</sub> . $\times$ 0.9)     |
| Quiescent current                      | Iq             |                                    | 72        | 110<br><b>120</b> | mA        | Iout=0mA Excluding Icont                      |
| Ground pin current                     | Ignd           |                                    | 0.8       | 1.5<br><b>1.8</b> | mA        | Iout=50mA                                     |
| Standby current                        | Istandby       |                                    | 0.0       | 0.1<br><b>0.5</b> | mA        | Vcont≤0.15V Vout 0ff                          |
| Discharge current                      | Idis           | 13                                 | 29        |                   | mA        | Vrev=2V off state (71720)                     |
|                                        |                | 17                                 | 38        |                   | mA        | Vrev=3V off state (71730)                     |
|                                        |                | 19                                 | 41        |                   | mA        | Vrev=4V off state (71740)                     |
|                                        |                | 20                                 | 44        |                   | mA        | Vrev=5V off state (71750)                     |
| Contr                                  | ol terminal Sp | pecificati                         | ion (Pull | down res          | sistor =n | one (Note2)                                   |
| Control current                        | Icont          |                                    | 0.86      | 2.5<br><b>3.0</b> | μA        | Vcont = 1.8V Vout on                          |
| Control Voltage                        | Vcont          | 1.8                                |           |                   | V         | on state                                      |
|                                        |                |                                    |           | 0.35              | V         | off state                                     |
| Np Terminal Voltage                    | VNp            |                                    | 1.26      |                   | V         |                                               |
| Vo Vo/Ta Typ=25 ppm/°C Reference value |                |                                    |           |                   |           |                                               |
| Output noise                           | Vno            | 0.14 ~ (                           | 0.25 μV/  | Hz at1            | kHz       | Reference value                               |

Note 1: This value depends on the output voltage (this is a value for Vout=3V device.)

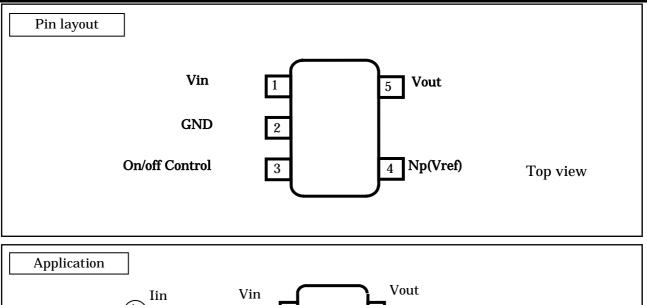
Note 2: The input current decreases to the pA level by connecting the control terminal to GND. (Off state)

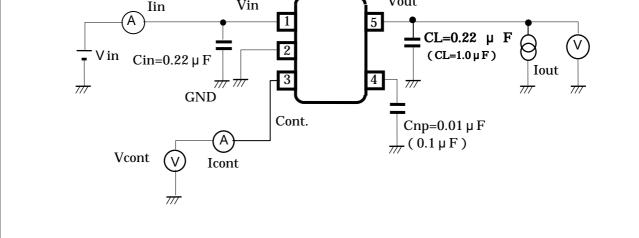
General Note: Limits are guaranteed by production testing or correction techniques using Statistical Quality Co ntrol (SQC) methods. Unless otherwise noted. Vtest=Vout<sub>Typ</sub>+1V, Iout=1mA (Tj=25°C)

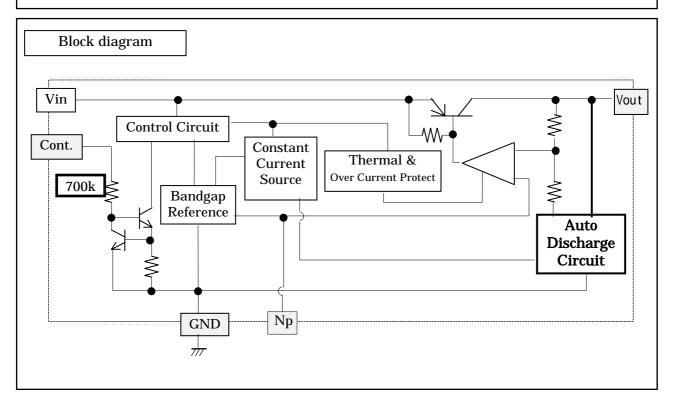
General Note: Exceeding the "Absolute Maximum Rating " may damage the device General Note: Connecting a capacitor to the noise bypass pin can decrease the output noise voltage General Note: Output noise is  $0.14-0.25 \,\mu\text{V}/$  Hz at  $1\text{kHz}: 25\sim65\mu\text{Vrms}$  at BW400-80kHz General Note: The ripple rejection is 84dB at 400Hz and 80dB at 1kHz.

[CL=1.0µF,Cnp=0.01µF,Vnois=200mV<sub>RMS</sub>,Vin=Vout<sub>Typ</sub>+1.5V,Iout=10mA]

#### Table 2


#### I Rank Output Voltage

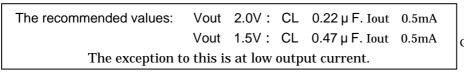

| Output  | Voltage | Vout                   | Vout                   | Test    | Output  | Voltage | Vout                  | Vout                    | Test    |
|---------|---------|------------------------|------------------------|---------|---------|---------|-----------------------|-------------------------|---------|
| Voltage | Code    | Min                    | Max                    | Voltage | Voltage | Code    | Min                   | Max                     | Voltage |
| 1.5V    | 15      | 1.450V<br><b>1.420</b> | 1.550V<br><b>1.580</b> | 2.5V    | 3.4 V   | 34      | 3.349 V<br>3.315      | 3.451 V<br><b>3.485</b> | 4.4 V   |
| 1.6     | 16      | 1.550<br><b>1.520</b>  | 1.650<br><b>1.680</b>  | 2.6     | 3.5     | 35      | 3.447<br><b>3.412</b> | 3.553<br><b>3.588</b>   | 4.5     |
| 1.7     | 17      | 1.650<br><b>1.620</b>  | 1.750<br><b>1.780</b>  | 2.7     | 3.6     | 36      | 3.546<br><b>3.510</b> | 3.654<br><b>3.690</b>   | 4.6     |
| 1.8     | 18      | 1.750<br><b>1.720</b>  | 1.850<br><b>1.880</b>  | 2.8     | 3.7     | 37      | 3.644<br><b>3.607</b> | 3.756<br><b>3.793</b>   | 4.7     |
| 1.9     | 19      | 1.850<br><b>1.820</b>  | 1.950<br><b>1.980</b>  | 2.9     | 3.8     | 38      | 3.743<br><b>3.705</b> | 3.857<br><b>3.895</b>   | 4.8     |
| 2.0     | 20      | 1.950<br><b>1.920</b>  | 2.050<br>2.080         | 3.0     | 3.9     | 39      | 3.841<br>3.802        | 3.959<br><b>3.998</b>   | 4.9     |
| 2.1     | 21      | 2.050<br><b>2.020</b>  | 2.150<br><b>2.180</b>  | 3.1     | 4.0     | 40      | 3.940<br><b>3.900</b> | 4.060<br><b>4.100</b>   | 5.0     |
| 2.2     | 22      | 2.150<br>2.120         | 2.250<br>2.280         | 3.2     | 4.1     | 41      | 4.038<br><b>3.997</b> | 4.162<br>4.203          | 5.1     |
| 2.3     | 23      | 2.250<br>2.220         | 2.350<br>2.380         | 3.3     | 4.2     | 42      | 4.137<br><b>4.095</b> | 4.263<br>4.305          | 5.2     |
| 2.4     | 24      | 2.350<br><b>2.320</b>  | 2.450<br><b>2.480</b>  | 3.4     | 4.3     | 43      | 4.235<br><b>4.192</b> | 4.365<br><b>4.408</b>   | 5.3     |
| 2.5     | 25      | 2.450<br><b>2.420</b>  | 2.550<br><b>2.580</b>  | 3.5     | 4.4     | 44      | 4.334<br><b>4.290</b> | 4.466<br><b>4.510</b>   | 5.4     |
| 2.6     | 26      | 2.550<br><b>2.520</b>  | 2.650<br><b>2.680</b>  | 3.6     | 4.5     | 45      | 4.432<br><b>4.387</b> | 4.568<br><b>4.613</b>   | 5.5     |
| 2.7     | 27      | 2.650<br><b>2.620</b>  | 2.750<br><b>2.780</b>  | 3.7     | 4.6     | 46      | 4.531<br><b>4.485</b> | 4.669<br><b>4.715</b>   | 5.6     |
| 2.8     | 28      | 2.750<br>2.720         | 2.850<br>2.880         | 3.8     | 4.7     | 47      | 4.629<br><b>4.582</b> | 4.771<br><b>4.818</b>   | 5.7     |
| 2.9     | 29      | 2.850<br>2.820         | 2.950<br><b>2.980</b>  | 3.9     | 4.8     | 48      | 4.728<br><b>4.680</b> | 4.872<br>4.920          | 5.8     |
| 3.0     | 30      | 2.950<br><b>2.920</b>  | 3.050<br><b>3.080</b>  | 4.0     | 4.9     | 49      | 4.826<br><b>4.777</b> | 4.974<br><b>5.023</b>   | 5.9     |
| 3.1     | 31      | 3.050<br>3.020         | 3.150<br><b>3.180</b>  | 4.1     | 5.0     | 50      | 4.925<br><b>4.875</b> | 5.075<br><b>5.125</b>   | 6.0     |
| 3.2     | 32      | 3.150<br><b>3.120</b>  | 3.250<br><b>3.280</b>  | 4.2     |         |         |                       |                         |         |
| 3.3     | 33      | 3.250<br><b>3.217</b>  | 3.350<br><b>3.383</b>  | 4.3     |         |         |                       |                         |         |


**Boldface type** applies over the full operating temperature range. (Ta=-40~85°C ) Iout=5mA

The output voltage table indicates the standard value when manufactured.

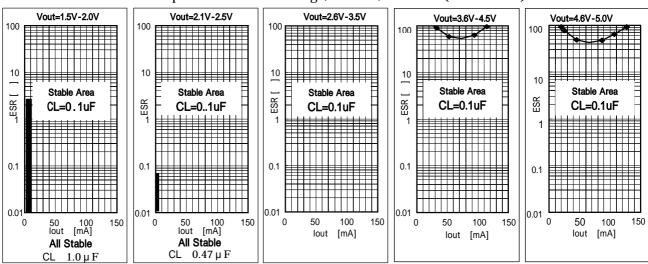
# RITOKO








#### Input /Output Capacitors


Linear regulators require input and output capacitors in order to maintain the regulator's loop stability. The equivalent series resistance (ESR) of the output capacitor must be in the stable operation area. However, it is recommended to use as large a value of capacitance as is practical. The output noise and the ripple noise decrease as the capacitance value increases.

ESR values vary widely between ceramic and tantalum capacitors. However, tantalum capacitors are assumed to provide more ESR damping resistance, which provides greater circuit stability. This implies that a higher level of circuit stability can be obtained by using tantalum capacitors when compared to ceramic capacitors with similar values.

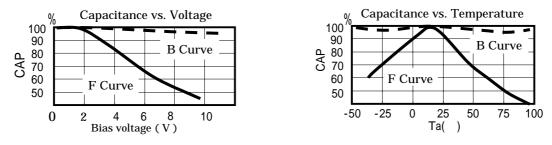


Cin=0.22  $\mu$  F  $\sim 0.1 \mu$  F  $\sim 0.1 \mu$  F  $\sim 0.1 \mu$  F

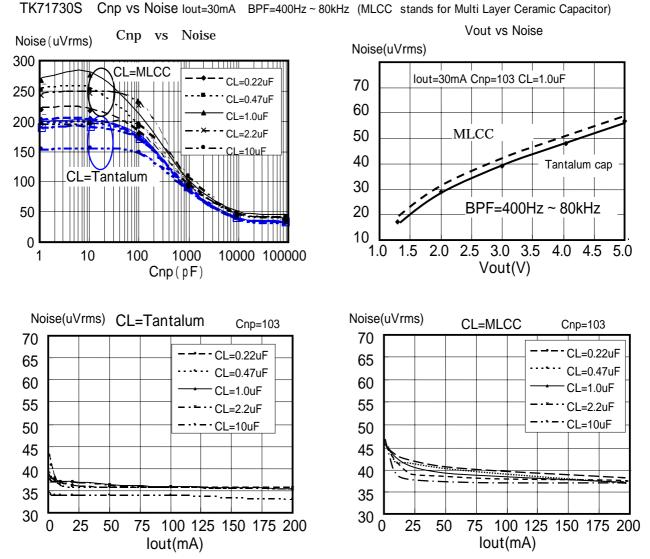
The input capacitor is necessary when the battery is discharged, the power supply impedance increases, or the line distance to the power supply is long. This capacitor might be necessary on each individual IC even if two or more regulator ICs are used. It is not possible to determine this indiscriminately. Please confirm the stability while mounted. The IC provides stable operation with an output side capacitor of  $0.22 \,\mu$  F (Vout 2.0V). If it is  $0.1 \,\mu$  F or more over the full range of temperature, either a ceramic capacitor or tantalum capacitor can be used without considering ESR.



Stable operation area vs. voltage, current, and ESR ( at 100kHz )  $% \left( {{\left( {{{{\rm{A}}}} \right)} \right)_{\rm{A}}}} \right)$ 

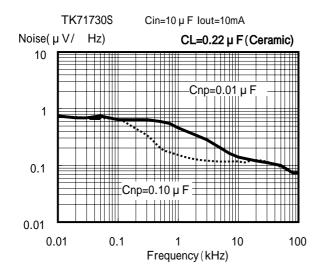

 $Please \ increase \ the \ output \ capacitor \ value \ when \ the \ load \ current \ is \ 0.5 \ mA \ or \ less. \ The \ stability \ of \ the \ regulator \ improves \ if \ a \ big \ output \ side \ capacitor \ is \ used \ (the \ stable \ operation \ area \ extends.)$ 

Low Voltage device: Please increase the output capacitor like  $1.0\,\mu\,F$  when the load current is used by 0.5mA or less.


For evaluationKYOCERA<br/>MURATACM05B104K10AB,<br/>CM05B104K10AB,<br/>CM05B224K10AB,<br/>CM05B224K10AB,<br/>CM105B104K16A,<br/>CM105B104K16A,<br/>CM105B224K16A,<br/>CM105B224K16A,<br/>CM105B224K16A,<br/>CM105B224K16A,<br/>CM21B225K10A<br/>GRM39B105K6.3Please increase the output capacitor to 1.0 μ F when the load current is 0.5mA or less.

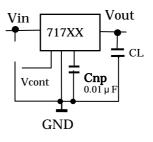
#### Bias Voltage and Temperature Characteristics of Ceramic Capacitor

Generally, a ceramic capacitor has both a temperature characteristic and a voltage characteristic. Please consider both characteristics when selecting the part. The B curves are the recommended characteristics.




#### **Output noise**



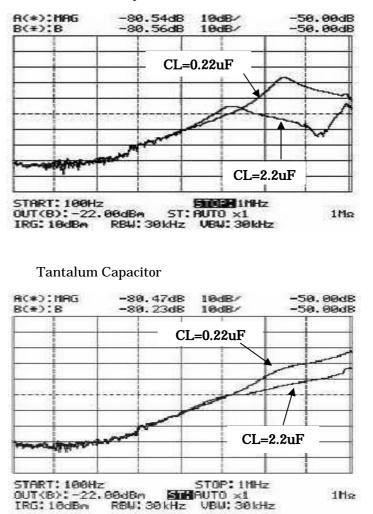

For better noise reduction, it is more effective to increase Cnp without increasing CL. The recommended Cnp capacitance is 6800pF (682) or 0.01  $\mu$  F (103). As the output voltage increases, the noise will also increase.

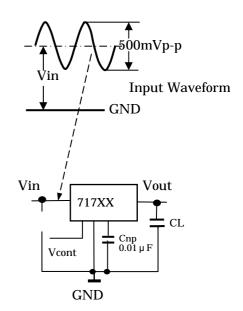
Please increase this capacitance when low noise is demanded. The IC does not operate abnormally about 0.1 and 0.22  $\mu\,F.$ 



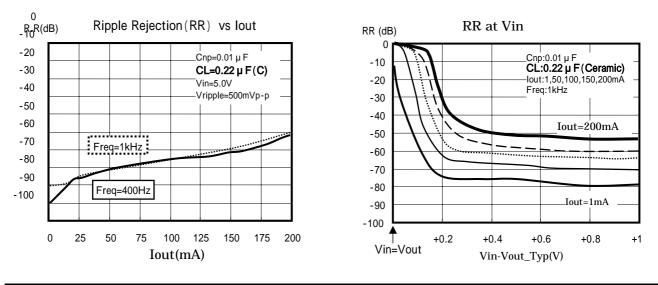
MLCC stands for Multi Layer Ceramic Capacitor.

TANTAL stands for Tantalum Capacitor.



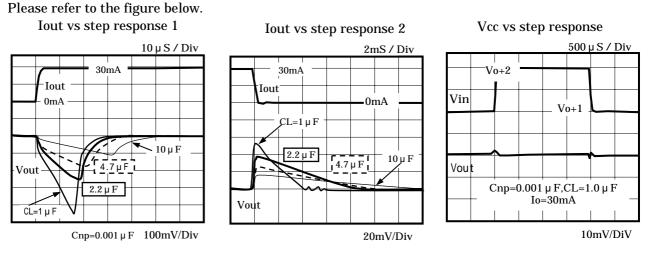


## **RH TOKO**

#### **Ripple rejection**


Vin=5.0V Vout=3.0V Iout=10mA VR=500mVp-p f=100~1MHz Cin=0 pF Cnp=0.01uF

M.L.Ceramic Capacitor





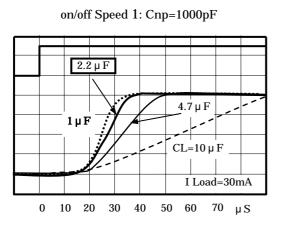

The ripple rejection characteristic depends on the characteristic and the capacitance value of the capacitor connected to the output side. The RR characteristic of 50KHz or more varies greatly with the capacitor on the output side and PCB pattern. If necessary, please confirm stability while operating.



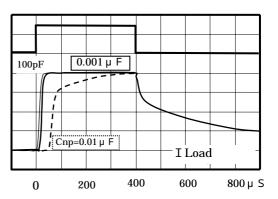
GC3-H006E

The stability level to a rapid power-supply voltage change and a load current change greatly depends on the value of the output side capacitor and the noise bypass capacitor.



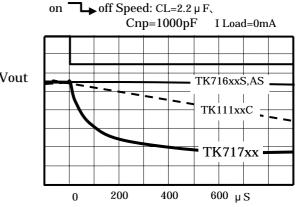

If the current is thrown into the load, the step response is settled fast.

#### On/off Speed


The on/off switching speed quickens when the Cnp and CL capacitance is reduced.

However, the Load transient and Line transient response deteriorate when the capacitance is small. In addition, the noise increases. We will recommend CL=0.22 µ F and Cnp=1000pF to the demand of high-speed operation. Please increase each capacitance when low noise is desired. The on/off switch speed greatly depends on the value of the output side capacitor and the noise bypass capacitor. Please refer to the figures below.

on




on/off Speed 2: CL=2.2 µ F



TK717xx has a short circuit during off. TK716xxS and AS have a Disconnect circuit Vout during off. TK111xxC is a normal regulator.

Please refer to the figure.



1.0

0.0

0

100

200

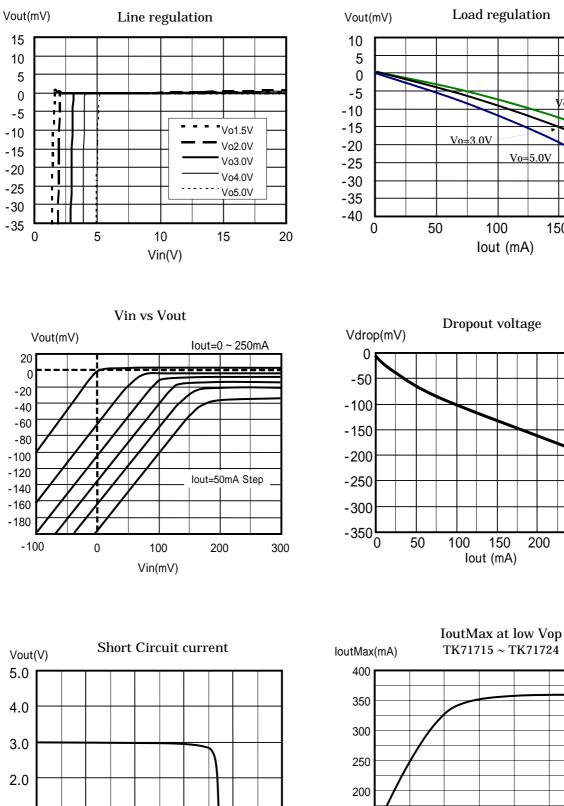
lout (mA)

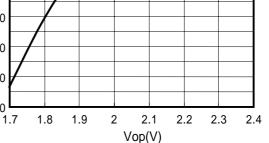
300

400

/o=2.0V

Vo=5.0V


150

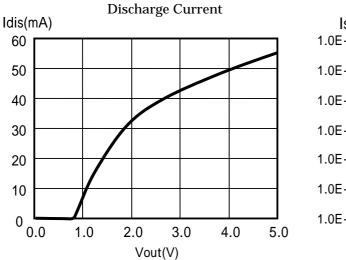

200

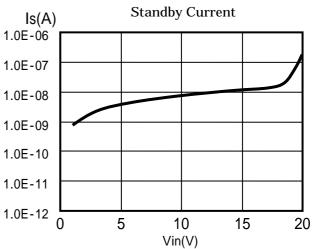
250

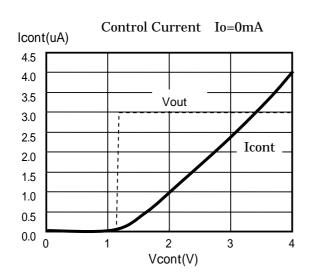
300

200

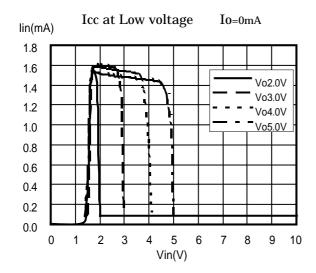


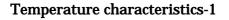




GC3-H006E

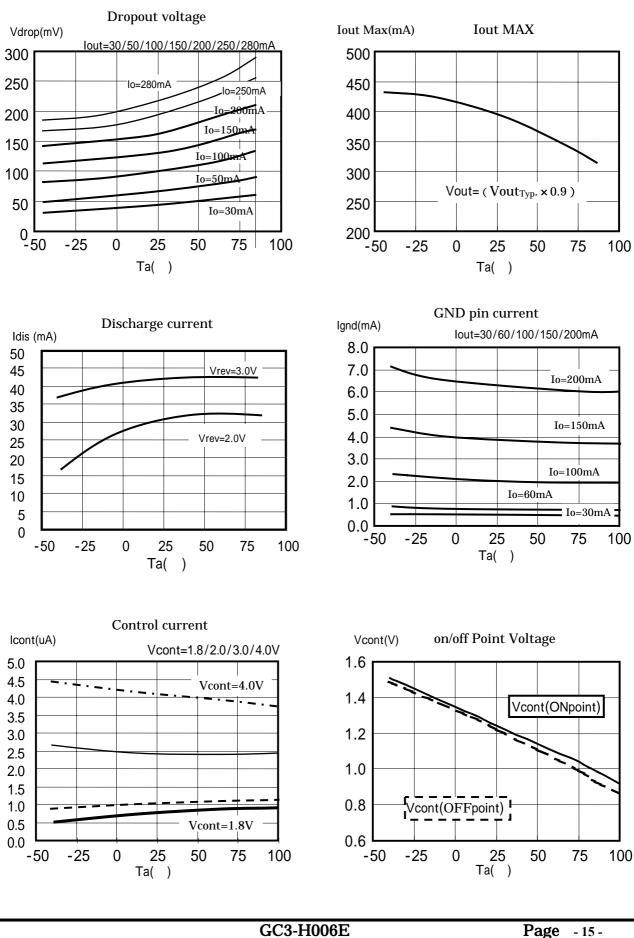

500

150


100

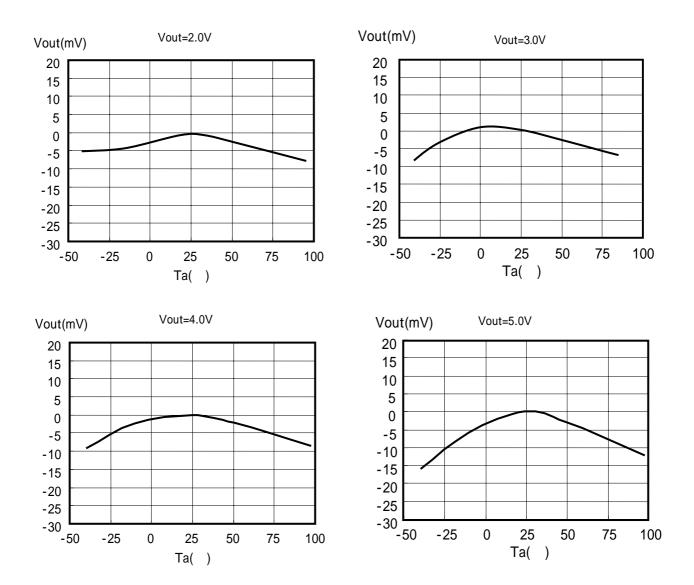




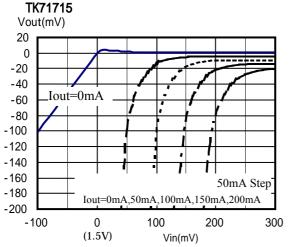

**GND** pin Current Ignd(mA) lout (mA)

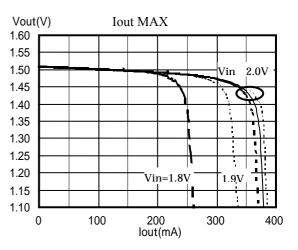


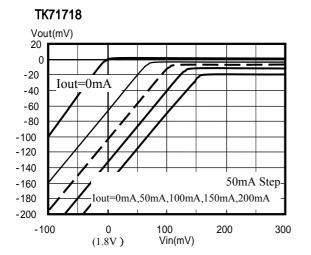


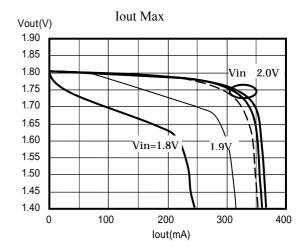

(Ta: Ambient temperature)

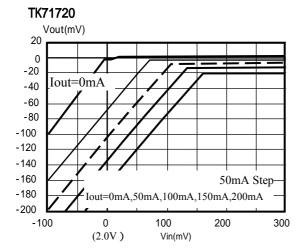


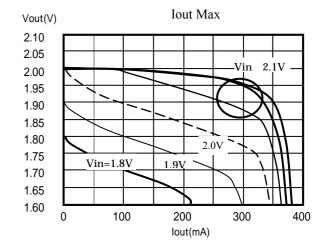

### Temperature characteristics-2 Output voltage


(Ta: Ambient temperature)





#### Low voltage device

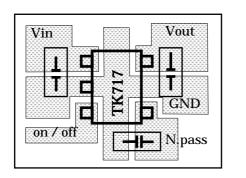

The operating initial voltage at normal temperature is about 1.6V. The voltage dependency of the output current at the low input voltage is large. The operating initial voltage rises at low temperature.

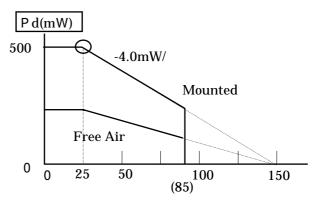









# **RTOKO**

#### Layout

Material : Grass epoxy 20 × 20mm t=0.8mm





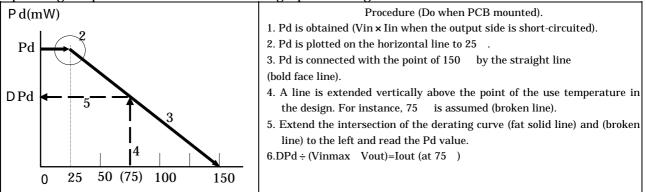
Pd=500 mW when mounted as recommended. Derate at 4.0 mW/°C for operation above 25°C. The thermal resistance is ( ja=250 /W). The heat loss of A and B are done in total. The package loss is limited at the temperature that the internal temperature sensor works (about 150 ). Therefore, the package loss is assumed to be an internal limitation. There is no heat radiation characteristic of the package unit assumed because of the small size. Heat is carried away by the device being installed on the PCB. This value changes by the material and the copper pattern etc. of the PCB. Enduring losses of about 500mW becomes possible in a lot of applications operating at 25  $\,$ .

#### Determining the thermal resistance when mounted on a PCB.

| The operating chip junction temperature is shown by            |                                |  |  |  |  |  |
|----------------------------------------------------------------|--------------------------------|--|--|--|--|--|
| Tj= ja x Pd+Ta.                                                | Tj of IC is set to about 150 . |  |  |  |  |  |
| Pd is a value when the overtemperature sensor is made to work. |                                |  |  |  |  |  |

| Ta ( Ta=25 )       |       |
|--------------------|-------|
| 150 = ja × pd + 25 |       |
| ja × P d = 125     |       |
| ja = (125 / pd)(   | / mW) |

#### Pd is easily obtained.


Mount the IC on the print circuit board. Short between the output pin and ground. after that, raise input voltage from 0V to evaluated voltage (see\*1) gradually.

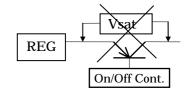
At shorted the output pin, the power dissipation  $P_D$  can be expressed as Pd=Vin × Iin.

The input current decreases gradually as the temperature of the chip becomes high. After a while, it reaches the thermal equilibrium. Use this current value at the thermal equilibrium. In almost all the cases, it shows 500mW(SOT23-5) or more.

\*1 In the case that the power, Vin × Ishort(Short Circuit Current), becomes more than twice of the maximum rating of its power dissipation in a moment, there is a possibility that the IC is destroyed before internal thermal protection works.

Pd is obtained by the normal temperature degrees. The current that can be used at the highest operating temperature is obtained from the graph of the figure below.




The maximum current that can be used at the highest operating temperature is: **Iout DPd** ÷ (Vinmax Vout).

When (Vinmax Vout) is small, a lot of Iout is calculated. However, use that exceeds IoutMax cannot be done.

#### Application hint

#### On/off Control

It is recommended to turn the regulator Off when the circuit following the regulator is non-operating. A design with a little electric power loss can be implemented. We recommend the use of the on/off control of the regulator without using a high side switch to provide an output from the regulator. A highly accurate output voltage with low voltage drop is obtained.



Vout

77

777

#### Auto discharge circuit

This circuit operates during off. Please do not connect the battery, the power supply, or other regulators to the output side. The charge of the output side capacitor chiefly passes through the automatic output side discharge circuit of the regulator during off.

#### For this function

It is not possible to operate by connecting two or more regulators with different voltages to the output side of the IC.

Vin

TK717XX

on / off

Because the control current is small, it is possible to control it directly by CMOS logic.

The PULLDOWN resistance is not built into the control terminal.

The noise and the ripple rejection characteristics depend on the capacitance on the Vref terminal.

- The ripple rejection characteristic of the low frequency region improves by increasing the capacitance of Cnp.
- A standard value is  $Cnp=0.01 \ \mu$  F. Increase Cnp in a design with important output noise and ripple rejection requirements. The IC will not be damaged if the capacitor value is increased.

#### **Definition of Terms**

The output voltage tables are specified with a test voltage of Vin = output voltage Typ+1V.

#### **Output Voltage (Vout)**

The output voltage is specified with Vin = output voltage Typ+1V and output current (Iout=5mA).

#### Maximum Output Current (Iout Max)

- The output current is measured when the output voltage decreases to (  $Vout_{Typ.} \times 0.9$ ). The input voltage is (output voltage Typ+1V). The maximum output current is measured in a short time so that it is not influenced by the temperature of the chip.
- The output current decreases during low voltage operation. Please refer to the "Low input voltage-output current" graph for 2.1V or less.

#### Dropout Voltage (Vdrop)

- The dropout voltage is the difference between the input voltage and the output voltage at which point the regulator starts to fall out of regulation. Below this value, the output voltage will fall as the input voltage is reduced. It is dependent upon the load current (Iout) and the junction temperature (Tj).
- The input voltage is gradually decreased below the test voltage. It is the voltage difference between the input and the output when the output voltage decreases by 100mV.

#### Line Regulation (Lin Reg)

Line regulation is the ability of the regulator to maintain a constant output voltage as the input voltage changes. The line regulation is specified as the input voltage is changed from (output voltage Typ+1V) to (output voltage Typ+6V). This measurement is not influenced by the temperature of the IC and is measured in a short time.

#### Load Regulation ( Load Reg)

Load regulation is the ability of the regulator to maintain a constant output voltage as the load current changes. The input voltage is set to (output voltage Typ+1V). The output voltage change is measured as the load current changes from 5 to 100mA and from 5 to 200mA. This measurement is not influenced by the temperature of the IC and is measured in a short time.

#### Quiescent Current (Iq)

The quiescent current is the current which flows through the ground terminal under no load conditions (Io=0 mA).

#### Ground Pin Current ( Ignd )

Ground pin current is the current which flows through the GND terminal according to load current. It is measured by (input current-output current).

#### Ripple Rejection (RR)

Ripple rejection is the ability of the regulator to attenuate the ripple content of the input voltage at the output. It is specified with the input voltage = (Vout + 1.5V), Io=10mA, CL=1.0  $\mu$  F and CN=0.01  $\mu$  F. An Alternating Current source of (f=1Khz and 200mV<sub>RMS</sub>) is superimposed to the power-supply voltage. Ripple rejection is the ratio of the ripple content of the output vs. the input and is expressed in dB. It is typically about 80dB at 1kHz. The ripple rejection improves when the value of the capacitor at the noise bypass terminal in the circuit is large. However, the on/off response worsens.

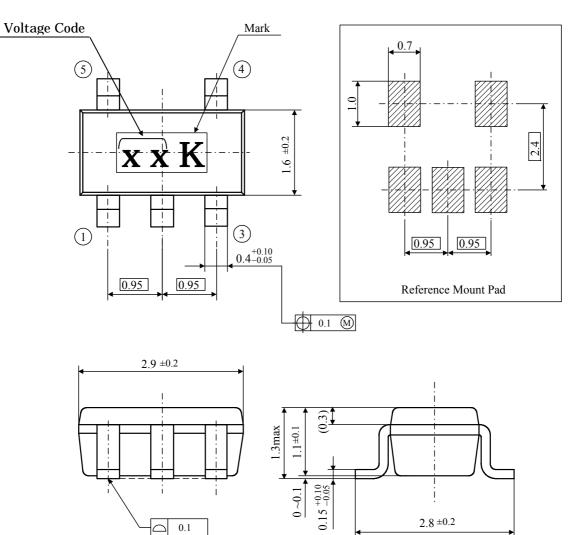
#### Standby Current

Standby current is the current which flows into the regulator when the control voltage is made 0 volts. It is measured with an input voltage of 8V.

#### **PROTECTION CIRCUITS**

#### Short circuit Sensor

This sensor operates when there is excessive output current. The short circuit sensor protects the device if the output is accidentally shorted to GND. The current flows at the set peak value.


#### **Thermal Sensor**

- The thermal sensor protects the device if the junction temperature exceeds the safe value (Tj = 150 °C). This temperature rise can be caused by extreme heat, excessive power dissipation caused by large output voltage drops, or excessive output current. The regulator will shut off when the temperature exceeds the safe value. As the junction temperature decreases, the regulator will begin to operate again. Under sustained fault conditions, the regulator output will oscillate as the device turns off then resets. Please improve heat radiation or lower the input electric power. When heat radiation is poor, the forecast package loss is not obtained.
  - \* In the case that the power,  $Vin \times Ishort(Short Circuit Current)$ , becomes more than twice of the maximum rating of its power dissipation in a moment, there is a possibility that the IC is destroyed before internal thermal protection works.

| ESD | MM  | 200pF | 0    | 200V Min  |
|-----|-----|-------|------|-----------|
|     | HBM | 100pF | 1.5k | 2000V Min |

Outline ; PCB ; Stamps

#### <u>SOT23-5</u>



Unit : mm

#### **Package Structure**

Package Material : Epoxy Resin Terminal Material : Copper Alloy Mass (Reference) : 0.016g

| V OUT | V CODE |
|-------|--------|-------|--------|-------|--------|-------|--------|
| 1.5 v | 15     | 2.5 v | 25     | 3.5 v | 35     | 4.5 v | 45     |
| 1.6   | 16     | 2.6   | 26     | 3.6   | 36     | 4.6   | 46     |
| 1.7   | 17     | 2.7   | 27     | 3.7   | 37     | 4.7   | 47     |
| 1.8   | 18     | 2.8   | 28     | 3.8   | 38     | 4.8   | 48     |
| 1.9   | 19     | 2.9   | 29     | 3.9   | 39     | 4.9   | 49     |
| 2.0   | 20     | 3.0   | 30     | 4.0   | 40     | 5.0   | 50     |
| 2.1   | 21     | 3.1   | 31     | 4.1   | 41     |       |        |
| 2.2   | 22     | 3.2   | 32     | 4.2   | 42     |       |        |
| 2.3   | 23     | 3.3   | 33     | 4.3   | 43     |       |        |
| 2.4   | 24     | 3.4   | 34     | 4.4   | 44     |       |        |

The output voltage table indicates the standard value when manufactured.

### **1. NOTES**

■ Please be sure that you carefully discuss your planned purchase with our office if you intend to use the products in this application manual under conditions where particularly extreme standards of reliability are required, or if you intend to use products for applications other than those listed in this application manual.

• Power drive products for automobile, ship or aircraft transport systems; steering and navigation systems, emergency signal communications systems, and any system other than those mentioned above which include electronic sensors, measuring, or display devices, and which could cause major damage to life, limb or property if misused or failure to function.

• Medical devices for measuring blood pressure, pulse, etc., treatment units such as coronary pacemakers and heat treatment units, and devices such as artificial organs and artificial limb systems which augment physiological functions.

• Electrical instruments, equipment or systems used in disaster or crime prevention.

■ Semiconductors, by nature, may fail or malfunction in spite of our devotion to improve product quality and reliability. We urge you to take every possible precaution against physical injuries, fire or other damages which may cause failure of our semiconductor products by taking appropriate measures, including a reasonable safety margin, malfunction preventive practices and fire-proofing when designing your products.

■ This application manual is effective from Nov. 2006. Note that the contents are subject to change or discontinuation without notice. When placing orders, please confirm specifications and delivery condition in writing.

■ TOKO is not responsible for any problems nor for any infringement of third party patents or any other intellectual property rights that may arise from the use or method of use of the products listed in this application manual. Moreover, this application manual does not signify that TOKO agrees implicitly or explicitly to license any patent rights or other intellectual property rights which it holds.

■ None of the ozone depleting substances(ODS) under the Montreal Protocol are used in our manufacturing process.

### 2. OFFICES

If you need more information on this product and other TOKO products, please contact us.

■ TOKO Inc. Headquarters 1-17, Higashi-yukigaya 2-chome, Ohta-ku, Tokyo, 145-8585, Japan TEL: +81.3.3727.1161 FAX: +81.3.3727.1176 or +81.3.3727.1169 Web site: <u>http://www.toko.co.jp/</u>

■ TOKO America Web site: <u>http://www.toko.com/</u>

■ TOKO Europe Web site: <u>http://www.tokoeurope.com/</u>

■ TOKO Hong Kong Web site: <u>http://www.toko.com.hk/</u>

■ TOKO Taiwan Web site: <u>http://www.tokohc.com.tw/</u>

■ TOKO Singapore Web site: <u>http://www.toko.com.sg/</u>

■ TOKO Seoul Web site: <u>http://www.toko.co.kr/</u>

■ TOKO Manila Web site: <u>http://www.toko.com.ph/</u>

■ TOKO Brazil Web site: <u>http://www.toko.com.br/</u>

# **RETOKO** Semiconductor Division

YOUR DISTRIBUTOR